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Abstract

Several attempts have been made in the literature to improve the ability of statistical models to predict turbulent compressible flows.
As yet, it is not possible to accurately predict both free and wall-bounded flows with the same model under a variety of conditions. One
drawback in these attempts has been the lack of sufficiently reliable data with which to assess the various terms arising in the compress-
ible turbulent transport equations. In this study, the exact terms of the solenoidal dissipation rate equation are calculated for the first
time in both a compressible channel flow and a turbulent mixing layer. This data is then used to assess both the exact and modeled form
of this equation. In its exact form, terms explicitly dependent on dilatation fluctuations and density and viscosity gradients appear. In
addition, the terms that are also present in the incompressible equation now may vary differently under increased compressibility con-
ditions. This latter effect can be either an indirect one, that is compressibility modifies mean quantities and Reynolds stresses, or a direct
one, that is the processes in the solenoidal dissipation rate equation are themselves modified by compressibility. In order to separate the
indirect and direct effects, it is assumed that the processes in the solenoidal dissipation rate equation are properly described by the avail-
able incompressible functional forms. The model coefficients are then determined by a priori tests. Direct effects appear if the coefficients
depend on compressibility. These effects have then to be modeled additionally.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since the early 1990s, direct numerical simulations of
compressible turbulent flows have become more common.
These simulations increase our understanding of compress-
ible turbulence, and aid in the development of turbulence
models for compressible flows. For example, Blaisdell
et al. (1993) have shown that compressibility effects in iso-
tropic turbulence are highly dependent on initial condi-
tions; whereas, in homogeneous turbulent shear flow
compressibility effects become more or less independent
of its initial conditions since the mean shear couples dilata-
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tion fluctuations with vorticity and strain rate fluctuations
(a result demonstrated by linear theory). As a consequence,
compressible isotropic turbulence is much less suited for
turbulence model development than compressible homoge-
neous shear flow. Another important finding, resulting
from DNS of homogeneous turbulent shear flow, has been
reported by Sarkar (1995). It concerns the fact that the gra-
dient Mach number, Mg, defined by the mean shear rate,
an integral length scale and the mean speed of sound, con-
trols the growth rate of turbulent kinetic energy (TKE) and
not the turbulent Mach number. It also means that an
increase in Mg reduces the TKE production, and modifies
the Reynolds stress anisotropy (structural changes). On
the other hand, related changes in pressure–dilatation cor-
relation and compressible dissipation rate (energetic effects)
are comparatively weak up to supersonic Mg numbers.
Hence, turbulence models for compressible flow have
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Nomenclature

Be baroclinic term, Eq. (6i) (m2/s4)
cp, cv specific heats at constant pressure and volume

(m2/(s2 K))
C1

e ; C2
e ; C3

1; C3
2 coefficients in the turbulence models

for production and destruction terms (–)
Cl coefficient in the model for turbulent transport

term (–)
Cq; Cp; Cpq; CBe coefficients in the turbulence model

for baroclinic term (–)
CSC

e term (7c) defined by Sinha and Candler (2003)
(m2/s4)

De viscous diffusion term, Eq. (6g) (m2/s4)
DSC

e term (7a) defined by Sinha and Candler (2003)
(m2/s4)

Fe term (6j) involving cross-products between den-
sity and viscous stress gradients (m2/s4)

H channel half width (m)
K ¼ 1

2 qu00i u00i =�q specific turbulent kinetic energy (m2/s2)

l = (2K)3/2/e integral turbulent length scale (m)
M = uav/cw global Mach number, channel flow
Mc = Du/(c1 + c2) convective Mach number, mixing

layer
p pressure (kg/(m s2))
Pr = lcp/kT Prandtl number
P 1

e ; P 2
e ; P 3

e ; P 4
e production terms, Eqs. (6a)–(6d) (m2/s4)

Reav = qavuavH/lav global Reynolds number, channel
flow

Rel ¼
ffiffiffiffiffi
2K
p

l
m turbulent Reynolds number

Reh = qavDudh/lav global Reynolds number, mixing
layer

Rek ¼
ffiffiffiffiffi
2K
p

k
m Taylor Reynolds number

sij ¼ 1
2 ðui;j þ uj;iÞ strain rate tensor (1/s)

S� ¼ jrU jK
e non-dimensional shear rate

T temperature (K)
Te turbulent transport term, Eq. (6f) (m2/s4)

T c
e compressible turbulent transport term, Eq. (6h)

(m2/s4)
ui Cartesian component of velocity vector (m/s)gu00i u00j ¼ qu00i u00j =�q specific Reynolds stress (m2/s4)

us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=qw

p
shear stress velocity (m/s)

u�s ¼
ffiffiffiffiffiffiffiffiffiffi
sw=�q

p
semi-local shear stress velocity (m/s)

z Cartesian coordinate, normal to wall or in main
shear direction (m)

z� ¼ z�qu�s=�l semi-local viscous coordinate (–)

Greek symbols

c = cp/cv ratio of specific heats
dh momentum thickness (m)
dij Kronecker delta (–)
es, ed, eI solenoidal, dilatational and inhomogeneous dis-

sipation rates, respectively, Eqs. (4a)–(4c) (m2/
s3)

f = z/dh non-dimensional Cartesian coordinate (–)

k ¼
ffiffiffiffiffiffi
m2K
e

q
Taylor micro scale (m)

kT heat conduction coefficient (m kg/(s3 K))
l dynamic viscosity (kg/(m s))
m kinematic viscosity (m2/s)
q density (kg/m3)
r� constant model coefficient, r� = 1.3
sij ¼ 2lðsij � 1

3 skkdijÞ Cartesian component of viscous
stress tensor (kg/(m s2))

sw wall shear stress (kg/(m s2))
� viscous destruction term, Eq. (6e) (m2/s4)
� SC viscous destruction term as defined by Sinha and

Candler (2003), Eq. (7b) (m2/s4)
/,/1,/2,/3, dissipation rate of K and parts of it, Eqs.

(1), (2a)–(2c) (kg/(m s3))
xi Cartesian component of vorticity vector (1/s)
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primarily to account for structural changes in the Reynolds
stress tensor. Inspection of the Reynolds stress transport
equations immediately leads to the realization that such
structural changes will be due to the source/sink terms in
these equations, namely production, pressure–strain rate
correlation and turbulent dissipation rate. Such structural
changes have also been demonstrated by Simone et al.
(1997) using linear rapid-distortion theory. Their RDT
analysis was capable of predicting the TKE growth rate
and the Reynolds shear stress anisotropy in surprisingly
close agreement with DNS data.

In direct simulations of high-speed mixing layers, Pant-
ano and Sarkar (2002) observed a monotone decrease of
the normalized pressure–strain rate correlation with
increasing convective Mach number that directly translated
into an inhibited energy transfer from the stream-wise to
the cross-stream Reynolds stresses. They also confirmed the
key role of the gradient Mach number in determining the
reduction of the pressure–strain rate term and provided a
rigorous explanation of this effect based on a wave equa-
tion for the pressure. A different mechanism is responsible
for similar changes in the structure of the pressure–strain
rate tensor in compressible flow along cooled walls. Based
on DNS data of supersonic channel flow and a Green’s
function analysis of the pressure Poisson equation, Foysi
et al. (2004) found mean density variations normal to the
wall (due to kinetic energy dissipation) to be responsible
for the reduction of pressure–strain rate correlations.

Unlike compressibility related changes of the Reynolds
stress tensor, corresponding changes of the turbulent dissi-
pation rate tensor have not been investigated so far using
DNS data. To the best of our knowledge, the only attempt
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to use DNS data of compressible flow to analyze the sole-
noidal part of the TKE dissipation rate es is that of Sinha
and Candler (2003). They analyzed all the terms in the es-
equation in the case of a Mach 4 turbulent boundary layer
as well as highlighted similarities and differences of the
terms with respect to the incompressible case and discussed
modeling implications. Previous studies of modeling the
dissipation rate equation (e-equation) have focused on
incompressible flows using DNS databases. Mansour
et al. (1988) were the first to identify the different terms
in the e-equation and to note that existing closure models
work well away from the wall, but need improvement close
to the wall. Rodi and Mansour (1993) provided improved
models for production, destruction, turbulent diffusion
and pressure diffusion in the e-equation, using channel
DNS-data of Kim et al. (1987). Nagano and Shimada
(1995) provided a new and rigorous model for both the
TKE and the e-equation that not only improved the Rodi
and Mansour channel flow predictions, but also showed
excellent results in ZPG and APG boundary layer predic-
tions compared to DNS and experimental data. As the
present results will reveal, excellent low Reynolds number
turbulence models for incompressible flow form the basis
for proper compressible flow modeling for wall-bounded
flows, and that fairly simple adaptions of incompress-
ible model forms are suited for compressible flow
predictions.

Motivated by the above, the analysis here starts from
the exact transport equation for the solenoidal part of
the TKE dissipation rate, and utilizes a natural splitting
into a viscous diffusion, destruction and a volume force
term normal to the density gradient that contrasts with that
of Sinha and Candler (2003). Incompressible models for
production, destruction and turbulent transport terms are
then adapted to compressible flow by introducing the local
mean density, viscosity, and Favre averaged quantities. An
a priori assessment of the models consists of determining
the model coefficients from DNS of the exact terms and
the model functions. This is done separately for channel
flow and mixing layer, showing that the model coeffi-
cients are independent of Mach number. In the low-speed
mixing layer, density variations need separate modeling.
A new model is proposed for the baroclinic term in the
es-equation.
2. Exact and modeled form of the solenoidal dissipation
rate equation

It has been shown by Huang et al. (1995) that the turbu-
lent kinetic energy dissipation rate / ¼ s0iju

0
i;j can be decom-

posed into terms involving correlation between fluctuations
of the deformation tensor sij ¼ 1

2
ðui;j þ uj;iÞ and terms

involving correlations between fluctuations of viscosity
and s0ij, namely:

/ ¼ s0iju
0
i;j ¼ /1 þ /2 þ /3; ð1Þ
where

/1 ¼ 2�ls0ijs
0
ij �

2

3
�ls0kks0ll; ð2aÞ

/2 ¼ 2l0s0ijs
0
ij �

2

3
l0s0kks0ll; ð2bÞ

/3 ¼ 2l0s0ijsij �
2

3
l0s0kksll. ð2cÞ

In these and the following expressions, a single prime (Æ) 0

denotes a Reynolds fluctuation. The quantity /1 can again
be expressed as the sum of three parts: the solenoidal and
dilatational dissipation rates and an inhomogeneous term

/1 ¼ �qðes þ ed þ eIÞ ð3Þ
with

es ¼ ~mx0ix
0
i; ð4aÞ

ed ¼
4

3
~ms0kks0ll; ð4bÞ

eI ¼ 2~m ðu0iu0jÞ;ij � 2ðu0iu0j;jÞ;i
� �

. ð4cÞ

Using the DNS data of Coleman et al. (1995), Huang et al.
(1995) have demonstrated that correlations involving vis-
cosity fluctuations (terms /2 and /3) and the compressible
dissipation rate �qed are negligibly small in supersonic chan-
nel flow at least up to global Mach numbers of 3. Hence,
the solenoidal dissipation rate �qes and the inhomogeneous
term �qeI are the terms dominating dissipation effects in the
turbulent kinetic energy equation. Our interest lies in the
transport equation for es. The inhomogeneous term �qeI is
dominated by the second derivative of the Reynolds stres-
ses, hence its specification is a question of Reynolds stress
modeling. For this study, the es-equation is written in the
form

Des

Dt
¼ P 1

e þ P 2
e þ P 3

e þ P 4
e þ T e þ De � � þ F e þ T c

e

þ Be þ
es

~m
D~m
Dt

. ð5Þ

In Eq. (5)

P 1
e ¼ �2~mðu0i;j � u0j;iÞu0k;j�ui;k; ð6aÞ

P 2
e ¼ �2~mðu0i;j � u0j;iÞu0i;k�uk;j ð6bÞ

are the turbulent production of dissipation due to mean
velocity gradients,

P 3
e ¼ �2~mðu0i;j � u0j;iÞu0k�ui;jk ¼ �2~mx0iu

0
k �xi;k ð6cÞ

is the production due to the mean vorticity gradient,

P 4
e ¼ �2~mðu0i;j � u0j;iÞu0i;ku0k;j ð6dÞ

is the production due to vortex stretching by fluctuating
velocity gradients and

�� ¼ �2~m ðu0i;j � u0j;iÞ=q
� �

;k
sik;j ð6eÞ

is the viscous destruction term.
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Table 1
Parameters of the DNS of channel flow with cooled walls

Flow case M ¼ uav

cw
Reav ¼ qavuavH

lav

KM03 0.350 2808.6
K3000 1.5327 2452.2
K6000n 3.1399 3204.0

H is the channel half width, the subscript av denotes values averaged over
the whole flow domain, w wall values.
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T e ¼ �~m u0kðu0i;j � u0j;iÞu0i;j
� �

;k
ð6fÞ

and

De ¼ 2~m ðu0i;j � u0j;iÞ
1

q
sik;j

� �
;k

ð6gÞ

are the turbulent transport and viscous diffusion terms. The
remaining terms constitute the explicit contributions of
compressibility or density and viscosity gradients. These
include

T c
e ¼ ~m u0i;j � u0j;i

� �
u0i;ju

0
k;k; ð6hÞ

which is the compressible turbulent transport,

Be ¼ 2~m u0i;j � u0j;i
� �

q;jp;i=q2 ð6iÞ

and

F e ¼ �2~m u0i;j � u0j;i
� �

q;jsik;k=q2; ð6jÞ

which are the contributions due to forces on a volume ele-
ment that are normal to the density gradient. The baro-
clinic term Be is due to the force exerted by the pressure
gradient, Fe is due to the force resulting from the viscous
stress gradient. The last term on the RHS of Eq. (5)
requires no modeling and is simply the variation of the
mean kinematic viscosity. In the cases to be examined here,
this term can be neglected.

In the recent study by Sinha and Candler (2003), their
es-equations differs from the one used here in the partition-
ing of terms originating from the viscous term in the
momentum equation. They obtained a viscous diffusion
term, DSC

e , a viscous destruction term, � SC, and a viscosity
variation term, CSC

e , that can be written as

DSC
e ¼ ~m2 u0i;ju

0
i;j � u0i;ju

0
j;i

� �
;kk
; ð7aÞ

�� SC ¼ �2~m2 u0i;j � u0j;i
� �

;k
u0i;jk; ð7bÞ

CSC
e ¼ �� þ De þ F e þ

es

~m
D~m
Dt
� DSC

e þ �
SC
e . ð7cÞ

� SC and DSC
e are the terms that appear in the case of incom-

pressible flow with no property variation, and all effects of
compressibility and property variation are contained in
CSC

e . This makes the term CSC
e difficult to interpret. In the

limit of incompressible flow with no mean property varia-
tions, both formulations are equivalent, that is F e !
0;CSC

e ! 0; � ! � SC and De ! DSC
e . This is not the case

in flows with high density and viscosity gradients. As an
example, Fig. 1 shows the magnitude of the terms used
by Sinha and Candler (2003) in channel flow at M = 3.1
(case K6000n, Table 1). CSC

e and DSC
e are in balance at

the wall, and each term has high values that reach three
times the maximum of the destruction term � SC. Using
the partitioning presented here, no such large terms arise
(Fig. 2). The term additionally appearing compared to
the incompressible equation, Fe, remains negligible. Figs.
3 and 4 show that the terms used here behave qualitatively
the same for a wide range of Mach numbers. This suggests
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that the high values of CSC
e and DSC

e seem to result from an
unphysical split of small terms.

Models are needed to close the production, destruction
and transport terms in Eq. (5). These are given by

P 1
e þ P 2

e ¼ �C1
e

es

K
gu00i u00j eU i;j; ð8Þ

P 4
e � � ¼ �C2

e e
2=K; ð9Þ

P 3
e ¼ �C3

1 � emCl
K2

e
eU 2

i;kk � C3
2 � ~m

K
�qe
ð�qKÞ;m eU i;m

eU i;kk; ð10Þ

T e ¼ ft �
Cl

re

�qK2

e
ð�qeÞ;i

	 

;i

,
�q2; ð11Þ

where Cl is defined by �gu00i u00j ¼ ClðK2=eÞ eU i;j. The models
for Eqs. (8) and (9) were originally proposed by Hanjalić
and Launder (1972), and the model for P 3

e was developed
by Rodi and Mansour (1993). The turbulent transport Te

is modeled by a gradient diffusion model with re = 1.3.
All these models were designed for incompressible flow
and are adapted here for compressible flow by introducing
variable density and viscosity, and Favre mean and fluctu-
ating quantities. In the partitioning used here, the viscous
diffusion term De is not closed and it also has to be modeled.

The above models are used for a priori tests. From the
DNS simulations, each quantity in the above equations is
known, and the model coefficients C1

e ; C2
e ; C3

1; C3
2; f t,

and Cl can be determined. When these coefficients are cal-
culated from DNS data, compressibility effects altering
these quantities can be identified. The cases of channel flow
and mixing layer will be studied separately. This will isolate
the effects of compressibility in wall bounded and free shear
flows.

All the direct simulations are performed using a finite-
difference scheme for the primitive variables pressure,
velocity and entropy. Integration in time is done by a third
order Runge–Kutta scheme. Two different spatial discreti-
zations are used: A fifth order compact upwind scheme in
the case of channel flows, and an optimized fourth order
central compact scheme plus filtering of the highest wave-
numbers to stabilize the simulations in the case of the mix-
ing layer. A grid study in DNS of homogeneous sheared
turbulence showed that the terms in the es-equation (5)
can be claimed to be converged, if the error in this balance
equation is smaller than 20% of the destruction term � and
if � itself is not calculated explicitly, but as the sum of all
terms (Kreuzinger, 2006). This condition is met in the
channel and mixing layer simulations. The necessary
numerical meshes contained up to 27 and 134 million grid
points in the channel, respectively the mixing layer case.

3. Compressibility effects and their modeling

In order to properly compare terms and model coeffi-
cients for the various Mach and Reynolds numbers, suit-
able scaling parameters have to be found. For the
turbulent channel flow data analyzed here, Foysi et al.
(2004) have successfully used u�s ¼

ffiffiffiffiffiffiffiffiffiffi
sw=�q

p
as a fluctuating

velocity scale, and �l=sw and H/uav (uav = volume averaged
mean velocity) as the proper time scales for the near-wall
and the core regions, respectively. This allows for the scal-
ing of all the terms in the es-equation that can then be plot-
ted against the semi-local viscous coordinate z� ¼
z�qu�s=�l ¼ z

ffiffiffiffiffiffiffiffi
�qsw

p
=�l, close to the wall, and against z/H in

the core region. In the mixing layer, one scaling is sufficient
throughout the flow, namely Du (velocity difference across
the layer) for the velocity fluctuations, and dh/Du for the
timescale (dh = momentum thickness). The relevant coordi-
nate there is the self-similar coordinate f = z/dh.

3.1. Channel flow

Channel flow simulations carried out by Foysi et al.
(2004) are used here. The three channel flows (see Table
1) cover a substantial range of Mach numbers. The Rey-
nolds number, defined from mean quantities, Reav varies
little between cases. In the definitions M ¼ uav

cw
and

Reav ¼ qavuavH
lav

, volume averaged quantities are defined by
integration across the channel, e.g. qav ¼

R 1

0
�qdðz=HÞ. In

all cases, the Prandtl number and the ratio of specific heats
are kept at constant values, Pr = 0.71, c = 1.4, and the vis-
cosity follows the power law l � T 0.7. The main effect of
increasing Mach number is to increase the mean property
variation in the range z* < 30. This region is characterized
by steep gradients of density and viscosity close to the
cooled wall. For the three Mach number cases simulated,
the wall density is 0.02, 0.37 and 1.54 times higher than
the mean density. This effect is proportional to M2. In addi-
tion, any differences in mean velocity between the different
cases are accounted for using the channel flow velocity
scalings.

The near-wall scaling collapses the positions of the
peaks of terms in the es-equation (5), but the amplitudes
show a monotonic decrease with increasing Mach number
(Fig. 3). Only the terms explicitly dependent on compress-
ibility or density and viscosity gradients T c

e , Be and Fe

increase with Mach number, but they still remain negligi-
ble. Their maximum amplitude reaches 0.00075 in semi-
local scaling, which is less than one-tenth of the dominant
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terms.1 At the wall, the viscous diffusion term De decreases
with increasing Mach number (Fig. 4). For z* > 30 no com-
pressibility effect was seen (a result confirmed using an
outer scaling for the center region of the channel).

Plotted in inner variables, the profiles of the coefficients
C1

e and C2
e for the different Mach numbers collapse (see

Fig. 5). This indicates that no compressibility effects influ-
ence either the production or destruction terms.

Unfortunately, evaluation of the models for P 3
e and Te is

more difficult since these terms change sign across the
channel. Some progress can be made, however, by examin-
ing each term of the model for P 3

e separately (see Eq. (10)).
Fig. 6 shows that the second term is only important near
the wall (z* < 12). This is exemplified by the relatively con-
stant values of both C3

1 and C3
2 (�0.7 and 0.007, respec-

tively) in their respective regions of importance. C3
1 shows

no dependence on Mach number, C3
2 is decreasing, but only

slightly.
For the transport Te, there is a relatively good collapse

of the data for the model coefficient ft in the regions shown
1 The evaluation of the data of a compressible boundary layer at
M = 2.25 (Pirozzoli et al., 2004) showed that the terms which explicitly
depend on compressibility or density and viscosity gradients, reach
amplitudes of 0.00085. So they are also negligible near adiabatic walls.
in Fig. 7. In the near-wall region (z* < 12) and in the region
32 < z* < 42 (not shown), Te changes sign, so no meaning-
ful value of the coefficient can be obtained. If directly com-
pared to the exact term, the model works well except for a
small region in close proximity to the wall (Fig. 8). An
improvement of the model is possible, if the dependence
on turbulent kinetic energy is replaced by individual Rey-
nolds stress components.

In incompressible flows, the viscous diffusion term De

equals (me,i),i. This relation can be adapted directly to com-
pressible flows by introducing a variable density and vis-
cosity. This leads to De � ð�lð�qeÞ;iÞ;i=�q2 (Model A). A
more general and more complex expression can be
obtained using the fact, that – except for the wall point –
in semi-local scaling the term is nearly independent of
compressibility (Fig. 4). Since this is also true for the sole-
noidal dissipation rate in semi-local scaling, the relation
D�e � o2e�=oz�2, which is exact as Mach number goes to
zero, can be used as a model. Here the semi-locally normal-
ized quantities are D�e ¼ De=ðs3

w=�l2=�qÞ; e� ¼ e=ðs2
w=�l=�qÞ and

z� ¼ z � ð ffiffiffiffiffiffiffiffi�qsw

p
=�lÞ. The relation for the semi-locally scaled

quantities can be transformed to a relation for non-normal-
ized ones. If the second term in the partial derivative of z*

with respect to z; oz�

oz ¼
�qsw

�l þ z � oð ffiffiffiffiffiffiffiffi�qsw

p
=�lÞ=oz, which is van-

ishing at the wall and at the channel center, is neglected, the
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resulting model is De � ½�lð�qe�lÞ;i=
ffiffiffi
�q
p �;i=ð�l�q

3
2Þ (Model B). In

Fig. 9, both models and the exact term are shown. At low
Mach number the models are indistinguishable. The second
formulation gives better results, especially for high Mach
numbers; although the behavior directly at the wall
(z* < 3) still cannot be captured exactly.

3.2. Mixing layer

The parameter range covered by the mixing layer simu-
lation data is given in Table 2. Again, Pr = 0.71, c = 1.4
and l � T 0.7. From this database, it is possible to investi-
gate the effect of different Mach numbers (M10 and M11)
Table 2
Parameters of the DNS of time dependent mixing layers

Flow case Mc ¼ DU
c1þc2

q2/q1 Reh ¼ qavDUdh

lav

M10 0.15 1 1072
M11 1.1 1 984
M14 0.197 2.7 941

The subscripts 1 and 2 denote the lower and the upper stream, dh the
momentum thickness.
and mean property variation (M10 and M14). The mean
density difference in simulation M14 is the same as in the
channel flow simulation at M = 3.1, K6000n, and Reh is
the average Reynolds number over the time interval that
was used to average the data using self-similar normaliza-
tion. The box size and initial conditions are chosen as in
the simulations described by Pantano and Sarkar (2002),
but the spatial resolution is twice as fine in order to prop-
erly represent the dissipative range of wave numbers.

The mean velocity profiles are independent of Mach
number. A density difference between the two streams
causes the center of the mixing layer, identified by the peak
in K, to be shifted continuously into the low density region
as a result of mean momentum conservation. In simulation
M14 the shift amounts to one momentum thickness. All
profiles therefore become asymmetric. In order to compare
the flows, data from M14 is always plotted over the shifted
coordinate z/dh + 1.

In the balance of the dissipation rate, P 1
e and P 2

e are not
affected by either Mach number or density difference. How-
ever, P 4

e and �� vary under the different conditions, but
their sum does not change substantially (see Fig. 10). The
turbulent transport Te was found to decrease with Mach
number; however, the density difference causes it to rise
at the low density side, reflecting the shift of the mixing
layer (see Figs. 14–16).

The compressible term T c
e and term Fe have positive

non-zero values at the center in the case of high Mach
number (M11), but they remain small compared to the
other terms. The value of the baroclinic term Be is even
smaller.

However, in the mixing layer case with a notable density
difference (M14), Be becomes as big as P 1

e and has a similar
shape. The compressible transport acts to redistribute the
effects of dissipation from the high to the low density side.
The term Fe is somewhat smaller and has an opposite effect
(Fig. 11). Be has to be modeled (see below), while the
summed contribution of Fe and T c

e still can be neglected.
The a priori tests using the mixing layer data can only

give reasonable values for model coefficients in the inner
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Fig. 10. Production and destruction terms in the es-equation; mixing
layers M10 (symbols), M11 (lines and symbols) and M14 (lines), scaling by
DU 4=d2

h.
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part of the mixing layer, because at the edges both the exact
terms and the modeled terms are much too small for mean-
ingful comparisons. In the inner part of the mixing layer
(�3 < z* < 3), Fig. 12 shows that C1

e is nearly independent
of compressibility effects. There, the mean values and
standard deviations are 0.66 ± 0.05, 0.72 ± 0.06 and
0.59 ± 0.06 for M10, M11 and M14. The value of C2

e shows
more irregularity, but the mean values of 1.11 ± 0.22,
1.20 ± 0.09 and 1.23 ± 0.39 for M10, M11 and M14 are
close together (see Fig. 13).
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Fig. 12. Model coefficient C1
e ; mixing layers M10 (symbols), M11 (lines

and symbols) and M14 (lines).
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Fig. 13. Model coefficient C2
e ; mixing layers M10 (symbols), M11 (lines

and symbols) and M14 (lines).
Once again, the model for the turbulent transport term
and the associated model coefficient are difficult to evaluate
since Te changes sign within the layer. It is more instructive
to compare model and exact term directly. (Due to oscilla-
tions resulting from the evaluation of the terms in the
model, a box filter with filter-width dh was used to smooth
the profiles.) For all flow cases the agreement between
model and exact term is good, if ft = 0.5, as is shown by
Figs. 14–16.
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Fig. 15. Turbulent transport of solenoidal dissipation rate Te and its
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Since the terms P 3
e and De are negligible in the mixing

layer, models for these terms are not tested.

4. Modeling the baroclinic term

The model for Be should fulfill the following conditions:
(i) since it is only relevant in situations with mean density
gradients, the model should include this factor; (ii) it
should either scale as the other terms in the dissipation rate
balance or vanish for infinite Reynolds number – otherwise
no self-similar solution is possible. The model assumptions
are checked using data from the mixing layer case M14.

At the outset, it has to be determined which correlation
appearing in the term Be ¼ 2~mðu0i;j � u0j;iÞq;jp;i=q2 ¼
�2~m~x0 � ðrp 	rqÞ=q2 has to be modeled. A first step is
to treat the squared density in the denominator of the term:

~x0 � ðrp 	rqÞ=q2 ¼ ~x0 � ðrp 	rqÞ=�q2

þ
X1
n¼1

~x0 � ðrp 	rqÞ � �2
q0

�q
� q02

�q2

� �n

.

ð12Þ
It can be shown from the DNS data, that the correlations
with density fluctuations do not contribute substantially to
the term.

Following Krishnamurty and Shyy (1997), the correla-
tion in the first term on the RHS of Eq. (12) can be split
into

~x0 � ðrp 	rqÞ ¼ ~x0 � ðrp0 	 r�qÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 1

þ~x0 � ðr�p 	rq0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 2

þ ~x0 � ðrp0 	 rq0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 3

. ð13Þ

These authors concluded from an order of magnitude anal-
ysis, that the second term is the dominant one. In a recent
publication, Aupoix (2004) derived a model for the first
term and neglected the remaining two. The present DNS
data, however, leads to another conclusion. Fig. 17 shows,
that the triple correlation (Term3) dominates, which
means, that this term has to be modeled.

The present modeling approach is to represent the scalar
and vector products by rms-values and a correlation
coefficient:
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Fig. 17. Terms in Eq. (13); mixing layer M14.
~x0 � ðrp 	rqÞ ¼ ~x0 � ðrp 	rqÞ0

� C � x0rms � ðrp 	rqÞ0rms; ð14Þ

ðrp 	rqÞ0rms � Cpq � rp0rms � rq0rms. ð15Þ

In this approach, only x0rms ¼
ffiffiffiffiffiffiffi
e=~m

p
is closed. rp0rms;rq0rms

and the coefficients C and Cpq have to be modeled.
It is assumed that the hydrodynamic pressure fluctua-

tions p0rms � 2�qK are the relevant ones. Acoustic fluctua-
tions are assumed not to contribute to the baroclinic
term, since in a sound wave density gradients are parallel
to pressure gradients. To get an estimate for the gradient,
the relevant length scale has to be chosen. Using the
assumption of isotropic turbulence and an inertial range,
Batchelor (1951) estimated the fluctuating pressure

gradient as 1:17Re
1
4
l2qK=l ¼ 1:17 � 2qK=

ffiffiffiffiffi
lk
p

. In a later

work, George et al. (1984) divided the fluctuating pressure
gradient into a mean field–turbulence interaction part
that dominates in the case of small Reynolds number,
and a turbulence–turbulence interaction part. The first
was modeled as 1.46S*2qK/l, and the second asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:30Re1=2
l � 50:83

q
2qK=l. For infinite Reynolds number,

the model becomes 1:14Re
1
4
l2qK=l, which is similar to

Batchelor’s estimate. According to these theoretical find-
ings the model for rp0rms has the form

rp0rms � Cp �
2qKffiffiffiffiffi

kl
p ¼ Cp �

qe3=4

~m1=4
. ð16Þ

The density fluctuations are estimated by a mixing
length model. Since the mixing is affected by both the large
and small scale structures, an intermediate length scale
between the integral scale and the Taylor microscale would
be appropriate. As the length scale for the gradient, the
Taylor microscale is chosen, similar to velocity gradients.

rp0rms � Cp �
jr�qj

ffiffiffiffiffi
kl
p

k
¼ Cp � jr�qj � 4K

~me

� �1=4

. ð17Þ

Combining the results from Eqs. (14)–(17) yields the model

Be � 2CBe

jr�qj
�q

� � ffiffiffiffiffiffi
2K
p

e. ð18Þ

It can immediately be seen that Be is proportional to the
mean density gradient as required by condition (i). Since
in the mixing layer e � DU3/dh, K � DU2 and r�q � �q=dh,
the complete model scales like DU 4=d2

h. This is the same
scaling as the models for production, destruction and tur-
bulent transport, so condition (ii) is fulfilled.

The assumptions associated with Eqs. (14)–(17) can be
validated, and the model coefficients calibrated for the mix-
ing layer M14 data. The a priori evaluation of the model
given in Eq. (14) yields a value for C, the correlation coef-
ficient between x 0 and ($p · $q) 0. Fig. 18 shows the distri-
bution across the layer. Its mean value for �3 < z* < 3 is
�0.07. Additionally, Eqs. (16) and (17) yield values for
Cp and Cq of 3.1 and 1.2, respectively. Using these values,
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Figs. 19 and 20 show the good performance of the submod-
els for fluctuating pressure and density gradients. The value
for Cp is roughly 2.5 times higher than the value predicted
by Batchelor (1951) for high Reynolds number isotropic
turbulence.

Writing the vector product in Eq. (15) in terms of the
magnitude of the vectors and the angle / between them
gives

ðrp 	rqÞ02rms ¼ ðjrp0jjrq0j sin /Þ2 � C2
pqjrp0j2jrq0j2.

ð19Þ
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Fig. 19. Exact term and model for rp0rms, Eq. (16), Cp = 3.1; mixing layer
M14.
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M14.
If it is assumed, that both the direction and magnitude of
the gradients of pressure and density are uncorrelated,
the above equation simplifies to

sin2 / � C2
pq. ð20Þ

The pdf f(w) of / needed to determine the value of Cpq is
1
2

sin w under these assumptions.2 So

Cpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ p

0

1=2 � sinðwÞ sin2ðwÞdw

s
¼

ffiffiffiffiffiffiffiffi
2=3

p
� 0:816. ð21Þ

Note, that the assumption of independence of the two vec-
tors causes only their averaged vector product to be zero,
not their rms-value.

This value slightly over-predicts the term in the mixing
layer, but is close to the value of 0.7 determined from an
a priori evaluation of the term (see Fig. 21). The assump-
tion of independence of the gradients is not perfect, but
does give a good estimate.

The comparison between the exact term Be and its model
using CBe ¼ 0:18 ð� 0:07 � 0:7 � 3:1 � 1:2Þ shows, that the
model works well (see Fig. 11). Only the shift of the term
into the low density region, in addition to the shift of the
whole layer, is not correctly predicted since C is taken as
2 We are looking for the pdf of the angle / between two independent
vectors, which we consider as unit vectors. If the first vector is regarded as
one axis of a sphere of radius R = 1, the second vector points from the
center of the sphere to any point on its surface with equal probability.
Now the probability P, that / is smaller than a certain value w equals the
ratio between the segment of the surface of the sphere with / < w and the
whole surface of the sphere:

Pf/ < wg ¼ p2R2ð1� cosðwÞÞ
4pR2

¼ 1

2
ð1� cosðwÞÞ.

So the probability density function f is the derivative of P with respect to
w:

f ðwÞ ¼ 1

2
sinðwÞ.
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constant (although its amplitude is rising towards the low
density region, Fig. 18).

If the model is applied to channel flow at high Mach
number, Be, which should be negligible, is overpredicted
for z* < 30. This is once again because C is taken as con-
stant, whereas it has a constant value of about �0.08 only
for z* > 50. Near the wall, it is close to zero. Additionally,
very close to the wall (z* < 5) the model cannot work, since
there Term 1 in Eq. (13) dominates, because of the high
mean density gradient.

5. Summary

An examination of terms in the solenoidal dissipation
rate equation (5) shows added contributions from terms
explicitly dependent on compressibility or density and vis-
cosity gradients in addition to terms that also appear in
incompressible flows. A new partitioning of these terms
facilitates the identification of compressibility effects in
the development of closure models for the terms explicitly
dependent on compressibility or density and viscosity gra-
dients as well as the standard terms appearing in both the
incompressible and compressible formulations. The a pri-
ori analysis using DNS databases presented here leads to
the following conclusions:

(i) Near cooled walls strong mean property variations
are induced. The terms in the transport equation
for the solenoidal dissipation rate are in most cases
reduced by compressibility.

(ii) The tests show that the coefficients in the modeled
terms of the solenoidal dissipation rate equation are
independent of Mach number and mean property
variation. It can be concluded that the compressibil-
ity effects in the transport equation for es are of
indirect nature. This is reasonable, because compress-
ibility effects should be proportional to the turbulent
Mach number Mt = u/c and the gradient Mach
number Mg = Sl/c. Both parameters are related to
large structures, and not to the small ones which pre-
dominantly determine the kinetic energy dissipation
rate. The small structures scale with the Kolmogorov
length g and velocity scale ug and hence are very
small. So the corresponding Mach numbers are close
to zero and no direct compressibility effects are
expected. Provided good incompressible models are
available for all terms, their adapted forms will also
be good models for compressible computations.

(iii) The relevance of the Mach numbers discussed in (ii)
can also explain why the terms explicitly dependent
on compressibility or density and viscosity gradients
are negligibly small in most cases. In the only flow
where these terms are of non-negligible size, the mix-
ing layer with high mean property variation, this is
not caused by high Mach number, but by low Mach
number mixing of fluid of different density. For the
baroclinic term Be a model is proposed. The other
two terms, Fe and T c

e, are not modeled, because their
combined contribution can be neglected.

Even though these results are relevant to a wide variety
of flows, the conclusions reached are not without limits.
The compressible flows considered here were without
shocks and without relevant changes of density or viscosity
along a mean flow streamline. In flows where these phe-
nomena appear, additional effects may arise and would
have to be taken into account.
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Hanjalić, K., Launder, B.E., 1972. A Reynolds stress model of turbulence
and its application to thin shear flows. J. Fluid Mech. 52, 609–638.

Huang, P.G., Coleman, G.H., Bradshaw, P., 1995. Compressible turbulent
channel flows: DNS results and modeling. J. Fluid Mech. 305, 185.

Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully
developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.

Kreuzinger, J., 2006. Kompressibilitäts- und Dissipationseffekte in
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